
Proposal and Evaluation of Pin Access Algorithms
for Detailed Routing

Marcelo Danigno, Paulo Butzen
Centro de Ciências Computacionais
Universidade Federal do Rio Grande

Rio Grande, Brazil
{marcelo, paulobutzen}@furg.br

Jorge Ferreira, André Oliveira, Eder Monteiro, Mateus Fogaça, Ricardo Reis
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

{jaferreira, andre.oliveira, emrmonteiro, mpfogaca, reis}@inf.ufrgs.br

Abstract—Routing is a crucial step in the physical design of
integrated circuits (ICs). Modern electronic design automation
tools delve deep into detailed routing algorithms and pin access
methods. The need for fast and efficient algorithms is an emerging
challenge for physical design as design rules become more
complex. The use of a pre-processing step to find pin access
points helps in reducing the problem of detailed routing. This
work proposes four different methods for access point generation
and presents possible pitfalls when approaching the problem.

Index Terms—Electronic Design Automation, Physical Design,
Detailed Routing, Pin Access

I. INTRODUCTION

With the steady increase in IC design complexity and the
creation of new devices, components, and techniques, modern
ICs are becoming even more complex. Factors such as process
scaling, design for testability, variability, and manufacturability
have raised the speed and reliability of ICs while decreasing
their cost. These factors have drastically increased the com-
plexity of circuits, raising the need for fast and efficient EDA
(electronic design automation) tools. The usage of EDA tools
is so prominent that an improvement in EDA software directly
correlates in an overall better IC and the possibility of creating
even more intricate circuits [1].

In the physical design, there are several steps to design an
IC. One of those stages is the place and route. Placement is
the step in which the locations of cells and blocks are defined.
Blocks can be, for example, intellectual property (IP), while
cells are pre-characterized logic functions implemented in a
given technology. For technologies higher than 20nm, a stan-
dard cell library consists of several different logic gates with
a fixed height. These cells are then placed on the floorplan,
with performance and wire-length in mind. The standard cell
methodology reduces a lot of effort when using EDA tools,
resulting in shorter design times and an easier assembly of the
layout [2]. After placement, the routing stage is the one that
connects cells using metal wires and vias. These connections
are made while considering the resulting wire-length and
possible design violations. To reduce the complexity of the
calculations, it is possible to treat wire routing and pin access
as two different things. This reduces potential violations and
decreases the stress in the routing algorithm. Wire routing is
connecting two or more pins with metal in a specific layer. Pin

access consists of defining possible areas where a pin could be
accessed by either via or by contact. Those areas (pin access
areas) are called access points (AP).

This paper proposes four different methods of finding
violation-free APs. The objective is to compare the presented
procedures in performance, memory, and computational com-
plexity while emphasizing possible pitfalls in the creation of
a via placement algorithm.

This work is organized as follow: Section II presents some
essential details when computing APs while also showing
similar works that treat this problem. Section III explains
the four procedures and their respective pseudo-codes and
characteristics. The results obtained when running the four
different methods are shown in Section IV. The conclusion is
presented in Section V.

II. BACKGROUND

In this section, we present the theoretical foundation that
this paper is based on. For this work, we generate AP’s to
guide the detailed routing. The detailed routing step is when it
is determined the exact route that a wire takes when connecting
two or more pins. This is usually done with the support of a
routing grid, which is a group of lines (creating a grid) that
assists in the routing of metal layers. The routing grid specify
discrete positions for wires to avoid design rules violations.

To obtain an AP, first we need to determine what an AP is.
In this work, an AP is a Cartesian point in the routing grid. We
also only generate access points inside a pin geometry. These
APs could then be used to connect pins or metal segments
from different layers. This definition is not the same as the
theoretical approach presented in Section 1, where an AP is
just the pin access area (the whole pin geometry).

There is an extensive literature in AP generations strategies
[3] [4] [5], and each of them treats APs as different elements
in the routing flow. This paper uses a greedy implementation
to find the best via that could be placed in a particular pin. For
each AP, the algorithm tests the via with the biggest effective
area. This causes the algorithm to test multi-cut vias first (a
group of redundant vias), potentially increasing reliability and
yield. If no violation occurs, that via would be placed. If a
violation happens, the algorithm tests the next via in the list
(ordered by area). This results in a worst-case complexity of



O(n×k×Ovc), where n is the number of AP in a pin, k is the
number of vias for a specific layer (defined in the technology
file), and Ovc is the worst-case complexity of the violation
check function.

III. METHODOLOGY

In this Section, we present the four proposed methods
created to find a valid and violation-free via for a given AP.
These methods are called by another function which is applied
for each pin of the circuit. The inputs are the possible vias for
the layer and a pin. The function in question is described in
Algorithm 1.

Algorithm 1 Via Placement in AP

1: function VIAPLACEMENT(via library,Pin)
2: for AP in Pin do . Only for APs inside pin bounds
3: for Via in via library do
4: Compute Method . Runs 1 of the 4 methods
5: if Via is valid then
6: Add Feasible Via
7: end if
8: end for
9: end for

10: end function

It is important to note that a via is considered valid if there’s
no violation with other geometries or other vias. This test
includes the different layers that compose the via. If the via
is valid, it is added to a list of feasible vias. The via could
also be placed on to the layout as soon as it is established that
it is valid. This, however, could cause possible drawbacks,
such as being a potential obstacle for future vias or raising
the computational effort when computing other APs.

A. Procedure 1 (P1)

P1 consists in the creation of four hypothetical test rectan-
gles. These rectangles are created as an extension of the via,
and they define the area where a violation could occur, based
on the technology rules. They are then used on a simple axis
aligned bounding box (AABB) collision detection algorithm
that checks whether or not a violation happens. An example
of the process is shown in Figure 1.

Fig. 1: Example of a simple violation check. The figure on
the left shows a violation while the right figure shows a valid
via placement.

The green area presented in Figure 1 represents the area
where a violation cannot occur. The red area, on the other

hand, generates a violation when intersecting with the grey
rectangles. The violation area in this image represents the
metal to metal spacing (also called min. spacing) rules. Since
the violation could occur both vertically and horizontally, this
work defines them as horizontal spacing and vertical spacing.
For P1, the red area is defined by all pin geometries that are
not from the same net or do not intersect with the via.

The procedure consists of creating the four rectangles based
on the design rules of the technology files. These include
horizontal spacing, vertical spacing and, if needed, End-Of-
Line (EOL) spacing (either horizontally, vertically or both;
applied or not based on the minimum EOL width). After
obtaining the rectangles, the algorithm checks for a collision
between the rectangles and the cell geometries (including
possible power lines) using an AABB collision check. If a
collision occurs, and the geometry responsible for it doesn’t
collide with the via itself, the via is considered invalid. The
algorithm flow is described in Algorithm 2.

Algorithm 2 Procedure 1

1: function VIOLATIONCHECK(Via,Cell)
2: CollisionBox[0] = via + HorizontalRules
3: CollisionBox[1] = via + VerticalRules
4: CollisionBox[2] = via + HorizontalEOLRules
5: CollisionBox[3] = via + VerticalEOLRules
6: for Pin in Cell do
7: for Box in CollisionBox do
8: if Box collides with Pin then
9: Via is not Valid

10: end if
11: end for
12: end for
13: end function

From Algorithm 2, we can see that the complexity of this
method is high due to having to iterate over all the cell
geometries, even those that are more than one metal spacing
(minimum distance from metal to metal of the same layer)
away. The worst case complexity is O(4× np), being np the
number of pins in the specific cell. This method also results
in possible false violations (a via that is entirely valid causing
a false positive in the code), as a consequence of collision
checks of parts of the geometries that are completely inside
the pin bounds. These geometries that are also part of the pin
itself cannot cause a violation. An example of this problem is
presented in Figure 2.

Additionally, this implementation only does violation
checks for pins of the current cell. This may cause a via to be
valid when, in reality, a pin from an adjacent cell could cause
a violation with it.

B. Procedure 2 (P2)

P2 was designed to solve the false violations that happen in
P1. P1 treated the via as a whole, including parts that don’t
cause a violation. P2, on the other hand, only treats the edges
of the via that are outside the pin bounds. These edges are the



Fig. 2: Example of a false violation. In this case the pin
geometry is composed of two rectangles, causing the algorithm
to fail.

only ones that can generate a violation. This process requires a
new grid to be created, which consists of the x and y points of
each polygon that intersects with the via. With this new grid, it
is possible to create edges using the points that are only within
the via or within both the via and the pin. These edges are the
ones that can cause a violation with other geometries. With
the created edges (excluding those completely inside the pin
geometries), we can check violations for specific directions.
This direction depends on where the edge is located on the via.
If the edge is from the top part of the via, only upper violations
are checked. The same happens for all four directions. Edges
that consist of a via vertex and another point also require an
EOL violation check. An example of the violation check is
presented in Figure 3.

Fig. 3: Violation check used in P2. The figure on the left shows
a violation while the right figure shows a valid placement.

Figure 3 is similar to Figure 1, however, there are two main
differences. The unsafe pin area is now all pin geometries from
the design and the violation area extends only from the edges
of the via that are not part of a pin.

The procedure also uses RTrees to get the geometries to
check and to find out the ownership of a point (if it is part of
an via, pin, both or neither). This also solves the problem of
neighboring cells not being accounted for in violation checks.
The algorithm flow is described in Algorithm 3.

From Algorithm 3 we can see that this method requires
the creation of multiple supporting structures, increasing the
overall complexity and memory footprint of the algorithm.
Creating the grid requires multiples queries of the RTree.
Generating the lines to be checked also has a high complexity,
with a worst case of O(c× l), being c the number of columns
in the grid and l the number of lines in the grid. This method,
however, does not cause false violations, resulting in a higher
amount of vias placed.

Algorithm 3 Procedure 2

1: function VIOLATIONCHECK(Via,Cell)
2: Geometries = RTree(via.location)
3: for X in Geometries do
4: for Y in Geometries do Grid[X][Y] = RTree(X,Y)
5: end for
6: end for
7: for line in Grid do
8: if line not within Geometries then
9: Edges.append(line)

10: end if
11: end for
12: for Edge e in Edges do
13: e = e + Extension . Depends on direction
14: if e collides with Geometries then
15: Via is not Valid
16: end if
17: end for
18: end function

C. Procedure 3 (P3)

P3 is a simplified P2. It aims to increase readability and
reduce the number of queries to the RTree using polygons. A
polygon is one or more geometries that describes a particular
shape in the design. If A is the via polygon and B a polygon
that consists of every pin of the cell, A-B results in the
polygons that are part of the via but not a pin. These are
the polygons which can cause a violation. By extending these
polygons with the design rules we can check for an intersection
with B for possible collisions. If the result of said calculation
is not entirely within A, a violation was caused. An example
of the violation check is presented in Figure 4.

Fig. 4: Violation check used in P3. The figure on the left shows
a violation while the right figure shows a valid placement.

Figure 4 has the same concepts as Figure 3, however instead
of dealing with edges of the via itself, it treats the orange area.
The orange area is the difference between the via polygon and
the pin polygon.

This method still uses the RTree to get the geometries to
check and to find out the ownership of a point. However,
it creates polygons with the resulting geometries to reduce
the number of queries to the RTree. The algorithm flow is
described in Algorithm 4.

From Algorithm 4, we can see that this procedure is more
straightforward than P2. The worst-case complexity is O(R),
being R the difference between A and B; however, it still



TABLE I: Access Point Generation, Runtime and Memory for the four methods.

Benchmark Pin P1 P2 P3 P4
AP % Runtime (s) Memory (MB) AP % Runtime (s) Memory (MB) AP % Runtime (s) Memory (MB) AP % Runtime (s) Memory (MB)

ispd18 sample1 22 100.00% 0.0002 0 100.00% 0.0005 0 100.00% 0.0010 0 100.00% 0.0089 0
ispd18 sample2 32 100.00% 0.0002 0 100.00% 0.0006 0 100.00% 0.0012 0 100.00% 0.0098 0
ispd18 sample3 12 75.00% 0.0001 0 75.00% 0.0001 0 75.00% 0.0002 0 75.00% 0.0007 0

ispd18 test1 17203 96.79% 57.5868 10 99.21% 79.7906 18 99.21% 78.7555 18 96.14% 3.8561 2
ispd18 test2 157990 91.21% 2737.4500 46 99.06% 5086.0700 126 99.06% 5143.2700 127 91.37% 26.5994 9
ispd18 test3 158492 91.23% 2736.4400 45 99.07% 5243.8800 128 99.07% 5195.0300 128 91.35% 26.6865 9
ispd18 test4 317034 96.32% 11662.5000 92 96.19% 21971.7000 250 96.30% 21544.1000 249 73.22% 84.6997 14
ispd18 test5 316984 96.36% 11715.5000 92 96.24% 21996.5000 249 96.34% 21521.3000 250 73.84% 78.0911 14
ispd18 test6 474330 96.35% 26586.8000 137 96.22% 49041.3000 371 96.33% 48620.9000 372 73.54% 117.1900 22

Algorithm 4 Procedure 3

1: function VIOLATIONCHECK(Via)
2: B = RTree(via.location)
3: A = Via
4: R = A - B
5: for Poly in R do
6: Poly = Poly + Extension . Depends on direction

and ownership
7: end for
8: C = R n B
9: if C n A != C then

10: Via is not Valid
11: end if
12: end function

requires multiple support structures, increasing the overall
computation time and memory footprint of the algorithm.

D. Procedure 4 (P4)

P4 removes the RTree and is based around the calculations
presented in P3. Instead of creating a Rtree, this method
creates a map of polygons for each layer and for each cell.
In other words, this method has multiple different polygons,
one for each cell, and each one of them consists of all the
geometries of said cell. The overall procedure is the same as in
P3. The algorithm flow is the same as presented in Algorithm
4.

While the worst-case complexity is the same as P3, this
method does not use a RTree to find the surrounding geome-
tries and for ownership tests. It uses polygons and collision
tests between them. Since the pin polygon is a list that consists
of multiple rectangles, we can use a simple AABB collision
test for each item of said list. This also removes the need for
iterating through each query to create the polygons to check.
The result is a reduction in both complexity and memory.

IV. RESULTS

To compare the four methods, the results have been com-
puted for ISPD 2018 [6] benchmarks. These results are pre-
sented in Table I. Table I contains the name of the benchmark,
the number of pins of the benchmarks, and, for each procedure:
the percentage of pins that had at least one valid AP (for each
method), the runtime and the memory.

The four procedures, shown in Table I found valid APs
(violation-free) for more than 70% of the pins in the designs.
When analyzing the resulting design files, most of the pins

where no via is placed had no valid AP inside the pin geome-
tries, requiring a supporting off-grid algorithm to compute.
The other occurrences are either as a result of the method used
or because the pin and geometries around it were congested.

When it comes to individual analysis, P1 results in a reduced
number of vias placed because of its logic. While it is simple,
it causes false violations, which lowers the number of vias
placed, especially for the bigger benchmarks. P2 and P3
display similar results. By removing some uses of the RTree
and simplifying the logic, P3 yields a slightly lower run-time,
while increasing the overall readability and maintainability of
the code. Both methods don’t have false violations presented
in P1. However, their drawback is in the computational com-
plexity, resulting in an increased run-time when comparing to
P1. P4, on the other hand, removes the need for a RTree and
simplifies the code even further. This results in a significant
lower run-time and memory footprint. However, using a list
of polygons generates some false positives, since a polygon is
treated as multiple rectangles instead of only one object.

V. CONCLUSION

Given the results presented, it can be seen that computa-
tional complexity and care for design rules must be taken
in though when designing any algorithm revolving around
routing and access point generation. One simple false positive
case could fail to compute multiple pins in a design of
considerable size. When considering the complexity of routing
algorithms and the results presented, the only valid procedure
would be P4. It is important to note that the procedures
presented in this work could also be improved by using multi-
threading since the computation behind each AP is specific
for each pin.

REFERENCES

[1] D. Jansen, The electronic design automation handbook. Springer Science
& Business Media, 2010.

[2] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of stan-
dard cell vlsi circuits,” IEEE Transactions on Computer-Aided Design,
vol. 4, no. 1, pp. 92–98, 1985.

[3] X. Sun and F. Lombardi, “Design for testability of sequential circuits,”
Proc. IEEE - Computers and Digital Techniques, vol. 141, no. 3, pp.
153–160, 1994.

[4] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: an initial detailed router
for advanced vlsi technologies,” in 2018 IEEE/ACM ICCAD, 2018, pp.
1–8.

[5] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu, and D. Z. Pan, “Parr: Pin-access
planning and regular routing for self-aligned double patterning,” ACM
TODAES, vol. 21, no. 3, pp. 42–63, 2016.

[6] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, “Ispd 2018
initial detailed routing contest and benchmarks,” in Proc. ISPD, 2018,
pp. 140–143.


